Your cart is empty.
Silver winner of the Bioinformatics Life Science Industry Award 2019 in the category: |
The Spark Cyto can be an excellent support in any cell biology laboratory.
***************************************************************************************
***************************************************************************************
Tab 01 / 概述
***************************************************************************************
***************************************************************************************
Spark Cyto 汇集了一套独特的专利申请中的细胞成像技术组合,以确保您可实现真正的整孔细胞群研究。Cyto 仅需使用一张图像即可对96或384格式的微孔进行整孔成像 ,没有平铺或失真 ,这意味着您永远不会错过任何一个细胞。三个放大级别物镜和四个荧光通道,用于荧光和明场成像,为各种细胞学应用提供高质量的图像和数据分析。
了解更多关于细胞成像模块Spark Cyto 的配置建立在Spark多功能微孔板检测平台之上,它将复杂的成像技术与成熟的多模式微孔板检测功能相结合,使您能够定义新的研究方法,并比以往更快地获得可靠的数据
Spark Cyto 可以通过全自动多板细胞培养箱实现扩展,也可以整合到 Tecan 全自动工作流的工作站解决方案中。
进一步了解如何扩大您的实验规模 了解更多关于Spark Cyto的检测功能在不影响易用性和方便性的前提下,Spark cyto给您提供一个新的实验控制水平,可用于细胞检测更广泛的领域。五种常见细胞学应用的预定义方法提供了一种直观的图像获取和分析方法,并辅以“用户定义”参数和实时实验控制(Rec™)等附加功能,将为您实现解锁新的应用程序。
了解更多关于SparkControl和Image Analyzer软件* 功能取决于 Spark Cyto 的配置.
***************************************************************************************
***************************************************************************************
Tab 02 / 技术
***************************************************************************************
***************************************************************************************
Spark Cyto 荧光成像模块设计在最少的用户干预下为实验提供清晰的图像。它使用三个不同的物镜、五个LED(明场和荧光激发)、一个多波段滤光片组和一个12位CMOS相机,Spark Cyto 消除了像素偏移并快速提供高质量图像。
展示更多光学系统不需要移动光学元件或微孔板,就可以利用五个可用通道的任意组合完成微孔板成像。这消除了像素移位,尤其是在使用两个或多个通道时,显著的提高图像质量和获取速度
Spark-Cyto 使用了一种正在申请专利的基于 LED 的自动对焦系统,可提供高质量的图像,同时带来无与伦比的扫描速度。自动对焦系统将一个扩展的网格图案投射到样品表面,这样可以最大限度地减少孤立杂质带来的潜在扭曲。这种简单,快速和有效的自动对焦是 Spark Cyto 的标准配置,因此你永远不会错过任何高质量的图像。
Live Viewer 软件应用程序可以将 Spark Cyto 用作细胞图像实时查看,实时监测。所有光学通道和放大倍数都可以在实时查看器中使用,可以从软件的控制面板操作专用应用程序,也可以从方法编辑器界面操作。开始测量前,通过优化参数来消除荧光通道之间的焦点偏移或串扰。
Spark-Cyto 汇集了一套专利申请中的独特的宽视场细胞成像技术,以确保您可实现真正的整孔细胞群研究。仅需一张图像即可对96或384孔板进行整孔成像。没有平铺或失真,这意味着让你在更短的时间内全面了解细胞群,从而为您的研究带来新方向。
展示更多96孔板的单图整孔成像,没有平铺或边缘的光学畸变,呈现优异的细胞群分析结果。
许多成像系统都宣称具有获得整孔高质量图像的能力,但大多数成像系统都无法高效实现此功能。这些系统使用平铺或缝合来创建复合图像,但是由于微孔板壁上的液体导致形成半月板阴影,从而扭曲了细胞群的图像。
Spark-Cyto 用一张图片捕捉整个微孔(96和384孔板格式),给你一张真实的研究图片。
Spark Cyto 采用一种正在申请专利的方法,将图像采集与2x(96孔板)或4x(384孔板)物镜结合在一起,采用大型摄像芯片和先进的成像算法,一张图像就能获得准确的结果。
使用4X物镜获取24孔板的整孔成像。
原代细胞系在6-48孔板中表现出较好的生长动力学。spark cyto可在自动生成多个单一图像的基础上合成图像,从而对这些应用进行整孔成像。
Spark-Cyto 针对帝肯的细胞培养板进行了优化,这种组合确保了基于细胞的分析能得到最佳图像质量。
***************************************************************************************
***************************************************************************************
Tab 03 / 应用
***************************************************************************************
***************************************************************************************
Spark Cytol 采用用户友好的方法处理最常见的细胞学应用:
对于所有其他应用程序,只需选择“用户定义”选项即可在 SparkControl™ 中轻松设置自己的方法,或使用“仅图像”功能将文件导出到第三方图像分析软件。这使您能够完全灵活地满足各自的分析要求。
展示更多NHDF细胞96孔板中全孔成像,用2X物镜获取;并自动评估汇合度水平。
使用明场成像通道快速获取微孔板中的细胞密度。细胞汇合度水平由软件自动计算,并显示为黄色叠加,以便于视觉确认。此外,你可以使用粗糙度因子作为细胞死亡的简单指标。
CHO细胞384孔板中全孔成像,4倍物镜获得,并自动进行细胞核计数。
根据 Hoechst 33342 进行了优化,该功能提供了一种使用任何具有核DNA结合能力的蓝色荧光染料进行细胞计数的简便方法。火花控制结合了长期动力学分析的自动化和先进的功能,如动力学调节和远程监控,为复杂的实验装置提供了一种手动解决方案。
在96孔板中培养的CHO细胞的中心图像,用4X物镜获得,显示蓝色和绿色通道的叠加。
此功能可自动确定含有绿色荧光蛋白(gfp)并用 Hoechst 33342(蓝色)复染细胞的转染率—GFP,一种广泛用于基因表达研究的报告基因。分析绿色和蓝色信号叠加的图像,以确定细胞群的转染效率。
24孔板中培养HeLa细胞的中心图像,10倍物镜获得,显示了明场,绿色和红色通道的信号叠加图像。
Spark Cyto 预设的细胞活性应用依赖于一种常见的双重染色方法来区分细胞群中的活(绿色)细胞和死(红色)细胞。使用两种荧光染料,如钙黄绿素(活细胞)和碘化丙啶(死细胞),您可以在几分钟内完成对细胞群的成像和分析。
在96孔板中培养的A431细胞的图像,10倍物镜获得,显示了蓝色,绿色和红色通道信号的叠加图像。
细胞凋亡和坏死的检测和鉴别可以通过对相关类型细胞死亡的标志物特征的鉴别染色来完成,例如用Hoechst 33342、碘化丙啶和Annexin V-FITC。
Hoechst 33342 (蓝色)—核染色
Propidium iodide (红色)—坏死细胞染色
Annexin V-FITC/Alexa Fluor 488 (绿色)—与早期凋亡标志物磷脂酰丝氨酸(PS)结合
使用专有算法,Cyto 软件 Image Analyzer 可以独特地识别三类对象:
Spark Cyto 易于使用的 Multi-Color 多色分析应用程序非常适合用于计数和分析带有多个标签的细胞,它使用一个用于细胞核的荧光标记以及最多两个其它标签来自动描绘细胞特征。
Transmission
Spark Cyto 为研究人员提供了两个独特的编辑方法,从而定制他们的分析:
REC使您能够创建新的实验工作流。该系统将标准检微孔板测技术、成像功能和其他独特功能(如整合湿度和环境控制),REC开启了实验研究新的可能性。
REC使用这些设置功能开启智能化工作流,实现动力学实验自动执行,确保您不会错过任何重要的生物事件。
展示更多保持95%或更高的湿度水平对于未受损的细胞活力和生长是必不可少的,减少水分蒸发对于在长时间实验检测中保持一致的样品浓度也是非常有必要的。Spark 的专利湿度盒是一款高性价比的解决方案,可最大限度减少挥发。
Spark 内置的专利自动开盖功能为长时间动力学实验提供了理想的孵育环境,并降低了样品污染的风险。无论您是想在无人工干预的情况下自动注射试剂,还是在最小化挥发的情况下保持最佳孵育环境,Spark Cyto 都是唯一能够提供此独特优势功能的微孔板检测仪。
基于细胞的动力学实验需要在达到特定的信号阈值后执行特定的动作。没有动力学实验自动执行功能的多功能检测仪很可能使实验出错而无法进行实验研究。Spark Control 的动态调节功能允许您对系统进行编程,以便在达到预定信号时自动执行所需的实验操作,从而开启您的智能化工作分析流程。
Spark 结合了长时间动力学分析和自动化控制的先进功能,调节和远程监控复杂的实验,提供了新颖的解决方案。
***************************************************************************************
***************************************************************************************
Tab 04 / 软件
***************************************************************************************
***************************************************************************************
SparkControl, 可轻松实现长时间动力学实验的自动化检测。成像功能可与任何其他检测功能条进行组合,使的 Spark Cyto 可以毫不费力地直接创建各种多重分析实验流程。该软件采用了图标驱动的“拖放”操作方式,简单易学,节省时间。
Stay connected with your experiment wherever you are. Use the Tecan Connect mobile app to monitor instrument status and alert you when user interactions are required.
阅读更多内容对 Spark Cyto 获取的图像,可以使用Tecan专有的成像软件包 Image Analyzer 进行自动处理。此图像分析仪软件为您提供了一系列自定义选项,可以轻松调整和优化成像参数。
Images are saved in widely used jpg or tiff formats to make image analysis with alternative software products easy and seamless. In addition, Bio-Formats – an open source software plug-in that works with 150+ microscopy formats – is able to read Spark Cyto results, helping to simplify the use of a wide range of analysis tools.
***************************************************************************************
***************************************************************************************
Tab 05 / 配置
***************************************************************************************
***************************************************************************************
Spark Cyto 有四种不同检测方式的专有配置。无论您选择何种配置,他们都配备了可进行活细胞成像和检测的全套系统和功能。
Spark Cyto 的每种配置都包括以下实时细胞的检测功能,为荧光成像微孔板检测仪设立了全新的标准:
所有四种配置都可以选择性地与其他功能结合在一起-请参见概述。.
***************************************************************************************
***************************************************************************************
Tab 06 / 配件
***************************************************************************************
***************************************************************************************
Tecan 的 Spark Motion 解决方案可实现最多 40 块板的自动化无人值守的活细胞实验操作。
加样器可自动注射分配试剂,非常适合高灵敏度应用实验,如闪光发光实验。加样器带有加热/搅拌的选项,可减少沉淀的产生。
内置的蒸发保护功能最大限度地减少边缘效应,增强获得活细胞动力学分析数据的可靠性。
专利的湿度盒减少了标准微孔板的蒸发现象,使长时间的活细胞动力学研究无需切换到昂贵的防挥发微孔板—只需使用当前微孔板即可。有如下优点:
Stay connected with your experiment wherever you are. Use the Tecan Connect mobile app to monitor instrument status and alert you when user interactions are required.
阅读更多内容* Spark-Stack microplate stacker 支持所有读取模式,无需成像。
***************************************************************************************
***************************************************************************************
Tab 07 / 网络研讨会视频
***************************************************************************************
***************************************************************************************
通过将活细胞成像与行业领先的检测技术相结合,现在您可以将定性和定量信息整合到独特的多参数数据集中。
这些在线教学研讨课介绍了科学家如何利用细胞分析技术来推进其研究。
Dr. Christopher Wolff, FMP
If you are looking for a fast, uncomplicated and effective way of developing cytotoxicity cell painting assays, you won’t want to miss this webinar. Join Christopher Wolff from FMP Berlin and Christian Oberdanner from Tecan in an informative illustration of the precise and sensitive characterization of cytotoxicity based on multicolored imaging with Spark Cyto.
Dr. Julia Kirshner, zPREDICTA Find out about the benefits of using 3D culture models in oncology drug discovery. This webinar will focus on the importance of the tumor micro-environment and tissue-associated extracellular matrix (ECM) for obtaining accurate drug response data, using the novel analytical capabilities of the Spark® Cyto multimode imaging plate reader.
Metabolic profiling of cancer cell line collections has become an invaluable tool in the study of disease etiology and drug modes of action, as well as for selecting personalized treatments. However, its scale is limited by time-consuming sampling and complex measurement procedures. Discover how the Institute of Molecular Systems Biology at ETH Zurich has developed a high throughput metabolomics platform to overcome these bottlenecks, using timelapse microscopy to combine dynamic phenotypic and molecular profiling at high throughput.
Dr. Marek Widera, Alexander Wilhelm
To decipher the pathology of COVID- 19, in vitro cell culture models that can physiologically mimic the viral replication cycle are required. This webinar introduces the A549-AT cell line, generated to meet this need and enable rapid and sensitive monitoring of SARS-CoV-2 replication and facilitating the characterization of viral variants.
Understanding when and how cells die following drug treatment is critical in the drug discovery and characterization process. However, traditional cell-based experiments that rely on endpoint data collection lack the details to answer these questions. Learn how to make more informed decisions on drug candidates with live-cell imaging and kinetic data using high-throughput amenable assays and instruments.
Maintenance of genome integrity is essential for the prevention of mutations and cellular transformation, which can give rise to cancer. Find out how the Spark® Cyto was used to gain insights into DNA repair dynamics in living cells and study the DDR upon treatment with chemotherapeutic agents in fixed cells.
Dr. Roland Zauner, EB House Austria
In various cell-based assays, the number of cells is either determined as the primary measurement, as in proliferation assays, or used as a reference to normalize readouts. Find out how the new label-free cell segmentation tool can be applied in anti-cancer drug screenings and how research into the genetic skin disease epidermolysis bullosa will benefit from this development.
Dr. Christopher Wolff, FMP
Label-free imaging and analysis of cells using the brightfield imaging channel is a non-invasive, non-toxic alternative to fluorescent microscopy, but is challenging using conventional microscopes and automated imaging systems. Find out how cutting-edge neural network-based algorithm technology enables rapid, label-free cell counting, creating new opportunities for researchers to conduct live cell experiments and cell analysis.
***************************************************************************************
***************************************************************************************
Tab 08 / 文献
***************************************************************************************
***************************************************************************************
The Spark Cyto is a multimode reader platform equipped with a highly sophisticated fluorescence imaging module for real-time cytometry.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a global concern, due to its rapid spread. The study, published by the University of Frankfurt, describes the use of the Spark Cyto for the development of a cellular infection model that enables high throughput SARS-CoV-2 experiments and live cell imaging. The automated, non-invasive optical readout included assessment of confluency, roughness factor and fluorescence measurement. The data further highlights the use of the cell line for screening for antiviral compounds as well as for investigating the efficacy of neutralizing antibodies against different SARS-CoV-2 variants.
This application note systematically defines experimental parameters to enable live cell nuclear staining with minimal cytotoxicity during repeated exposure and continuous fluorescence imaging in the Spark Cyto, as well as robust automated cell segmentation with the SparkControl™ and Image Analyzer™ software.
The optimized procedure was used in a multiplexed, three-color assay to detect and distinguish early and late stages of apoptotic cell death, opening the door for dynamic long-term phenotype tracking.
Alzheimer’s disease (AD) and vascular dementia (VaD) are the two most common types of dementia, and their incidence is increasing year by year. They affect the health of the elderly, and cause a huge burden on society, with no effective treatments currently available.
In vitro research is the first step in drug evaluation, and cellular immunofluorescence can be used to more clearly define the role of drugs, provide more comprehensive and accurate information for downstream drug development.
This study uses the Spark Cyto – an innovative multimode reader with cell imaging capabilities – to evaluate the neuroprotective effects of miR-23b-3p (miRNA) and tilianin (compound) on stable transfected cell lines and human primary neurons. The results in this application note are based on a peer-reviewed article, published in the journal Oxidative Medicine and Cellular Longevity in August,2021, with the title: Tilianin Ameliorates Cognitive Dysfunction and Neuronal Damage in Rats with Vascular Dementia via p-CaMKII/ERK/CREB and ox-CaMKII-Dependent MAPK/NF-κB Pathways.
Scientific innovation is dependent on the power of observations, and the strength of the conclusions drawn from those observations. In in vitro biology, a majority of physiologically relevant outcomes adhere to dose- and exposure-dependent factors. Unfortunately, data collection for traditional cell-based experiments often occurs at arbitrary but convenient endpoints, and using inadequate or poorly informative tools.
The resulting data typically lack the appropriate kinetic resolution to fully answer details of the cause-and-effect relationship. Because biological pathways and processes are already inherently complex, a more efficient screening paradigm is required, allowing scientists to examine the important parameters of ‘when’ and ‘how’ to better characterize a given response. This application note seeks to provide a practical demonstration of how real-time assays and a plate reader with bright field and fluorescence imaging functionality can work in unison to reveal cell- and compound-specific features of an apoptotic response.
This application note describes the outcome of an experiment comparing the Opera Phenix with the Spark Cyto for the detection of apoptotic cells. For this study, Hoechst 33342 was used as a ‘blue’ nucleic counter stain, with TMRM and YO-PRO-1 as the two secondary mask signals. Please note that findings presented here do not necessarily reflect the general performance difference between the two systems.
使用 Spark Cyto 多功能微孔板检测仪实现自动化工作流
Automated monitoring of the reporter activity of hfob.1.19 cells following induction of osteogenic differentiation by temperature shift
While 3D cultures are superior to the 2D culture approaches in terms of physiological tissue organization and providing robust prediction of clinical outcomes, these techniques are often more expensive and time consuming to perform compared to the standard 2D protocols. Performing multiplexed assays with various readouts is therefore beneficial in order to gain the most information from each experiment. Here, we describe a multiplexed approach combining sequential imaging based LIVE/DEAD cell viability assays (Thermo Fisher Scientific) and CellTiter Glo luminescence analysis (Promega) using the Tecan Spark Cyto with r-Breast and r-mBreast models.
The genomic integrity of mammalian cells is constantly challenged by DNA damage arising from both endogenous and exogenous sources. Complex DNA repair pathways have evolved to deal with specific types of DNA lesions. An efficient DNA damage response (DDR) requires immediate detection and repair of the damage.
In addition, cell cycle checkpoints need to be activated to allow enough time for repair, prevent further damage through collision of the replication and transcription machinery with unrepaired lesions, and ensure that lesions are not passed on to daughter cells.
While impaired DDR can lead to serious diseases like cancer, it also presents an opportunity for therapeutic interventions exploiting these repair defects. 1 DNA repair is a highly dynamic process involving distinct and well-coordinated steps, and should therefore ideally be studied in living cells.2 However, a lot of post-translational modifications essential for the DDR can only be analyzed in fixed cells.
Patient-derived organoids (PDOs) are in vitro models originating from normal or cancerous stem cells that preserve the original cellular complexity, tissue morphology and pathophysiology. Currently, working with PDOs can be challenging due to the lack of automated equipment suitable for performing high throughput, imaging-based drug screening in organoid analysis pipelines. Tecan is addressing this need with a deep learning-based algorithm for the Spark® Cyto multimode plate reader, allowing automatic identification and segmentation of objects with complex 3D structures, such as organoids or spheroids. This application note evaluates the Spark Cyto for automated PDO imaging and analysis, using the new 3Dai deep learning-based algorithm available in the SparkControl™ software, as well as optimization of settings and re-analysis of the images in the Image Analyzer™ software.
Analyzing the dose-response relationship using cell-based assays is essential to understanding a drug’s efficacy. However, fixing the appropriate dose range and time point is often challenging. The D300e Digital Dispenser enables accurate delivery of compounds at picoliter levels, spanning a wide dose range – for example, from 0.2 nM to 1 μM – in just a few minutes. This can be combined with the live-cell imaging and full cell incubation capabilities of the Spark Cyto multimode reader to monitor cell proliferation under standard culture conditions (37 ºC, 5 % CO2). This technical note uses the D300e and Spark Cyto to comprehensively capture an anti-cancer drug’s efficacy profile, tracking cell viability with nine doses at 25 time points using luminescence-based and bright field imaging technologies simultaneously.
This Technical Note briefly describes how to use Image Analyzer for the optimization of confluence assessments in bright field images, as well as for object segmentation and counting in fluorescence images.
This application note describes a semi-high throughput approach for the analysis of intracellular Ca2+ and cellular Ca2+ uptake using the Spark Cyto’s multicolor fluorescence imaging and the Image Analyzer™ software’s integrated Voronoi analysis function. Treatment with the calcium ionophore ionomycin was used to increase intracellular Ca2+ concentrations, and Fluo-4 was used in combination with the nuclear counterstain Hoechst 33342 for measurement quantification.
This technical note describes the capabilities of the Spark Cyto to normalize a cellular signal to the cell number, or cell mass, per well. This dramatically improves the overall data quality of the respective cell-based assay and, finally, leads to an improved reproducibility of cell-based experiments and more efficiency in the lab.
使用 Spark Cyto 的 SparkControl 软件快速采集荧光图像
用明场和荧光成像精准自动分析细胞图像
微孔板检测仪可实现自动可视化和蛋白定量表达
区分活细胞,凋亡细胞和坏死细胞
用 Spark Cyto 活细胞成像检测仪定量测定活:死细胞比率
A non-invasive way to accurately count cells in brightfield using a deep learning algorithm.
Cell line development plays a crucial role in modern biological research and drug development. Clonal lines derived from a single cell can provide a reproducible and stable platform for drug discovery, studying biological processes and producing recombinant proteins. Genetic engineering and genome editing techniques have enabled the creation of cell lines with specific mutations or gene knockouts, allowing researchers to investigate the function of individual genes and pathways. Additionally, cell lines are used in the production of biologics, such as monoclonal antibodies and recombinant proteins, making the development of new and improved cell lines a critical area of research in both academia and industry. This technical note describes a method for using the Spark Cyto multimode reader to perform whole-well imaging of single mammalian cell clones in 96-well plates, in order to identify optimal clones. Both the Spark and Spark Cyto are capable of verifying monoclonality, however the Spark Cyto offers a faster readout and improved image quality compared to the Spark’s basic imaging functionality, providing higher throughput clone identification.
This technical note describes the use of the Uno Single Cell Dispenser to isolate single cells. This instrument harnesses microfluidic digital dispensing technology to gently isolate viable cells for various downstream applications, including cell line development.
The viability of the single cell post dispensing was assessed by addition of a fluorescent dye, that bound to the DNA of cells with impaired membrane integrity, using whole-well fluorescence imaging functions of the Spark Cyto.
Cell outgrowth rate was determined 10 days after single cell isolation with the Uno, using whole-well brightfield imaging. Using Uno and Spark Cyto together, enables simple single cell isolation and determination of monoclonal cell outgrowth for variety of downstream application.
Cell-based assays have a variety of practical uses within scientific research and are an integral component of many scientists’ workflows from testing tumor resistance for cancer research to helping identify novel therapeutic compounds in drug discovery.
Spark Cyto 在 Spark 多功能微孔板检测平台的基础上配备了一个高度复杂的荧光成像模块,主要用于活细胞实时检测。
阅读 Spark Cyto 彩页Tecan 的 Spark Motion 解决方案可实现最多 40 块板的自动化无人值守的活细胞实验操作。
Find out about the benefits of using 3D culture models in oncology drug discovery. This webinar will focus on the importance of the tumor micro-environment and tissue-associated extracellular matrix (ECM) for obtaining accurate drug response data, using the novel analytical capabilities of the Spark® Cyto multimode imaging plate reader.
Spark Cyto 仅用于研究